Hasse principle for Kummer varieties

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hasse Invariants for Hilbert Modular Varieties

Given a totally real field L of degree g, we construct g Hasse invariants on Hilbert modular varieties in characteristic p and characterize their divisors. We show that these divisors give the type stratification defined by the action of {~L o n the ap-elementary subgroup. Under certain conditions, involving special values of zeta functions, the product of these Hasse invariants is the reductio...

متن کامل

On the Hasse Principle for Shimura Curves

Let C be an algebraic curve defined over a number field K, of positive genus and without K-rational points. We conjecture that there exists some extension field L over which C violates the Hasse principle, i.e., has points everywhere locally but not globally. We show that our conjecture holds for all but finitely many Shimura curves of the form XD 0 (N)/Q or X D 1 (N)/Q, where D > 1 and N are c...

متن کامل

An “anti-hasse Principle” for Prime Twists

Given an algebraic curve C/Q having points everywhere locally and endowed with a suitable involution, we show that there exists a positive density family of prime quadratic twists of C violating the Hasse principle. The result applies in particular to wN -Atkin-Lehner twists of most modular curves X0(N) and to wp-Atkin-Lehner twists of certain Shimura curves XD+.

متن کامل

Counterexamples to the Hasse Principle

This article explains the Hasse principle and gives a self-contained development of certain counterexamples to this principle. The counterexamples considered are similar to the earliest counterexample discovered by Lind and Reichardt. This type of counterexample is important in the theory of elliptic curves: today they are interpreted as nontrivial elements in Tate– Shafarevich groups.

متن کامل

Counterexamples to the Hasse principle

In both of these examples, we have proved that X(Q) = ∅ by showing that X(Qv) = ∅ for some place v. In the first case it was v = ∞, the real place. In the second case we showed that X(Q2) was empty: the argument applies equally well to a supposed solution over Q2. Given a variety X over a number field k and a place v of k, it is a finite procedure to decide whether X(kv) is empty. Moreover, X(k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra & Number Theory

سال: 2016

ISSN: 1944-7833,1937-0652

DOI: 10.2140/ant.2016.10.813